SYNTHESIS OF ZnTeO₃ BY CRYSTALLIZATION OF GLASSES IN TeO₂-Bi₂O₃-ZnO-Nb₂O₅ SYSTEM

Svetlozar Ganev¹, Albena Bachvarova-Nedelcheva², Reni Iordanova², Bogdan Ranguelov³, Svetlin Parvanov¹

¹University of Chemical Technology and Metallurgy
8 Kliment Ohridski, 1756 Sofia, Bulgaria

²Institute of General and Inorganic Chemistry
Bulgarian Academy of Sciences, “Acad. G. Bonchev” str., bl. 11
1113 Sofia, Bulgaria
E-mail: albenadb@svr.igic.bas.bg

³Institute of Physical Chemistry “R. Kaischew”
Bulgarian Academy of Sciences, “Acad. G. Bonchev” str., bl. 11
1113 Sofia, Bulgaria

In memory of Prof. D.Sc. Yanko Dimitriev

ABSTRACT

The aim of the present work is to verify the synthesis of zinc tellurite by crystallization of glasses in TeO₂ - Bi₂O₃ - ZnO - Nb₂O₅ system. The investigation refers to TeO₂-based glasses containing up to 10 mol % of Nb₂O₅ and Bi₂O₃ and ZnO content ranging from 5 mol % to 10 mol %. Several glasses are selected and heat treated for 6h at 500°C. The XRD analysis detects formation of several ZnTeO₃, TeO₂ and ZnO crystalline phases. Additional information for the formation of ZnTeO₃ crystalline phase is obtained by infrared spectroscopy (IR). There is a difference in the IR spectra of the crystalline sample of 50TeO₂.50ZnO (ZnTeO₃) and those of the multicomponent glasses. The spectra analysis shows that the glass network consists mainly of TeO₄ (tbp) units, while TeO₅ (tp) are the main structural units in the crystalline ZnTeO₃ phase. The microstructure of the selected crystallized samples is examined by SEM analysis.

Keywords: tellurite glasses, crystallization, phase transformations, structure.

INTRODUCTION

Tellurite glasses and glass ceramics are promising materials due to their high refractive index (larger than 2), wideband infrared transmittance (extending up to 6 micrometer), and large third-order nonlinear optical susceptibility [1]. That is why over the past twenty years, tellurite glasses have been of an increasing scientific interest. It is well known that these glasses are also a subject of intensive investigations because they can form a glassy phase over a wide concentration range [1]. Tellurium(IV) oxide in combination with ZnO forms stable glasses [2]. Binary ZnO-TeO₂ system is a basic one that has good glass-forming ability (9 mol % - 40 mol % of ZnO) and has been studied by many researchers [1]. Multicomponent optical glasses are obtained [1] on its basis. The glass forming tendency as well as the different structural and optical properties of ZnO-TeO₂ system are well investigated [2, 3] with the application of IR, Raman, EXAFS.

Two compounds are known to exist in ZnO-TeO₂ system: Zn₅Te₆O₁₆ and ZnTeO₃ [2]. They are structurally investigated in details [4, 5]. These compounds are a subject of increased scientific interest due to their interesting properties. Recently, data concerning the synthesis and optical properties of ZnTeO₃ and Zn₂Te₃O₈ under varied experimental conditions has been reported [6]. The optical and electrical properties of ZnTeO₃ single crystals are reported by Nawash et al. [7].

Generally, it is necessary to control the process of
crystallization during the synthesis of zinc-tellurite glass compositions. Many authors have made an attempt to understand how to suppress the crystallization during the fabrication of glasses in different systems containing ZnO and TeO$_2$ [8 - 11]. To best of our knowledge, this topic has not yet been exhausted.

Dimitriev et al. [12 - 15] have investigated for many years the formation and the structure of non-traditional tellurite glasses. A lot of fundamental results concerning the type of the structural units building up the amorphous network have been obtained and they are reported in a series of papers. Generally, it is established that the short range order of tellurite glasses consists of TeO$_3$, TeO$_4$ or combinations of these polyhedra [12 - 15].

The present paper is a continuation of our previous investigations on the multicomponent TeO$_2$ – Bi$_2$O$_3$ – Nb$_2$O$_5$ – ZnO system, where the influence of TiO$_2$ on the thermal stability and crystallization of selected glasses is studied [11]. The aim of the present work is to verify the synthesis of ZnTeO$_3$ by crystallization of glasses in the multicomponent TeO$_2$ – Bi$_2$O$_3$ – Nb$_2$O$_5$ – ZnO system.

EXPERIMENTAL

Preparation of glasses

All samples subjected to detailed investigations are shown in Table 1. The batches were prepared using reagent grade TeO$_2$, Bi$_2$O$_3$, Nb$_2$O$_5$ and ZnO. 10 grams of each were homogenized and were melted in air for 15 min - 20 min using alumina crucibles at temperatures between 900°C-1000°C. The melting temperature was selected depending on the composition. The glass forming ability of the compositions was determined by pouring of the melts between two copper plates at a cooling rate of 10 K/s - 102 K/s. The obtained glasses were transparent and bright yellow coloured. Several compositions, situated in different part of the system were selected: 72TeO$_2$.10ZnO.9Bi$_2$O$_3$.9Nb$_2$O$_5$ (VI-glass), 64TeO$_2$.20ZnO.8Bi$_2$O$_3$.8Nb$_2$O$_5$ (6A-glass), 56TeO$_2$.30ZnO.70Bi$_2$O$_3$.7Nb$_2$O$_5$ (6B-glass), 32TeO$_2$.60ZnO.4Bi$_2$O$_3$.4Nb$_2$O$_5$ (6H-glass and crystals) and 48TeO$_2$.40ZnO.6Bi$_2$O$_3$.6Nb$_2$O$_5$ (6F-glass). The binary composition 50TeO$_2$.50ZnO (TZ), containing pure ZnTeO$_3$ was used for a comparison. All compositions were subjected to an additional heat treatment for 6h at 500°C.

Samples characterization

The phase formation of the powdered samples was established by X-ray phase analysis with a Bruker D8 Advance diffractometer using Cu Kα radiation in the 10 < 2θ < 80 range. The differential thermal analysis (DTA) of selected compositions was carried out on STA PT1600 with Pt/Pt/Rh thermocouples with a heating rate of 10 K/s in an air flow, using Al$_2$O$_3$ as a reference material. The morphology of the samples was examined by scanning electron microscopy (SEM) using a JEOL JSM 6390 electron microscope (Japan) equipped with ultrahigh resolution scanning system (ASID-3D). The IR spectra of the glasses were recorded in the 1400 cm$^{-1}$ - 400 cm$^{-1}$ region using KBr pellet technique (Nicolet-320 FTIR spectrometer).

Table 1. Investigated compositions in the TeO$_2$-ZnO-Bi$_2$O$_3$-Nb$_2$O$_5$ system.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Compositions</th>
<th>XRD data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50TeO$_2$.50ZnO</td>
<td>ZnTeO$_3$</td>
</tr>
<tr>
<td>TZ</td>
<td>72TeO$_2$.10ZnO.9Bi$_2$O$_3$.9Nb$_2$O$_5$</td>
<td>glass</td>
</tr>
<tr>
<td>VI</td>
<td>64TeO$_2$.20ZnO.8Bi$_2$O$_3$.8Nb$_2$O$_5$</td>
<td>glass</td>
</tr>
<tr>
<td>6A</td>
<td>56TeO$_2$.30ZnO.70Bi$_2$O$_3$.7Nb$_2$O$_5$</td>
<td>glass</td>
</tr>
<tr>
<td>6B</td>
<td>48TeO$_2$.40ZnO.6Bi$_2$O$_3$.6Nb$_2$O$_5$</td>
<td>glass</td>
</tr>
<tr>
<td>6F</td>
<td>32TeO$_2$.60ZnO.4Bi$_2$O$_3$.4Nb$_2$O$_5$</td>
<td>glass + cryst.</td>
</tr>
<tr>
<td>6H</td>
<td>48TeO$_2$.40ZnO.6Bi$_2$O$_3$.6Nb$_2$O$_5$</td>
<td>glass + cryst.</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

Phase transformations

Transparent and pale yellow glasses containing more than 40 mol % of TeO$_2$ (Table 1) are obtained. The X-ray diffraction patterns of selected glass samples (VI, 6A and 6F) are shown in Fig. 1(a), while that of the glass - crystalline one (6H) is presented in Fig. 1(b). The latter figure shows that ZnO (JCPDS 36-1451) and ZnTeO$_3$ are detected upon free cooling of the melt. The XRD pattern of the binary sample 50TeO$_2$.50ZnO where crystalline ZnTeO$_3$ (JCPDS 44-0240) phase are detected is shown in Fig. 1(c).

The thermal parameters of selected quenched glass samples (VI and 6F) are obtained from DTA curves (Fig. 2). They are characterized by a glass transition temperature (T_g) at 330°C and 370°C and glass crystallization temperature (T_x) above 400°C. It is obvious that the glass of a higher TeO$_2$ content (72 mol %, sample VI) exhibits a lower value of the glass transition temperature (330°C). The additional heat treatment of the samples (500°C for 6h) is carried out in view of DTA results obtained (Fig. 2), our previous investigations [11, 15, 16], as well as some literature data [17, 18]. The main crystalline phases that are detected after crystallization refer to TeO$_2$ (JCPDS 52-0795), ZnO (JCPDS 36-1451), ZnTeO$_3$ and two bismuthate crystalline phases: Bi$_2$Te$_4$O$_{11}$ (JCPDS 01-081-1330) and Bi$_2$Te$_2$O$_7$ (JCPDS 52-1260) (Fig. 3). As seen from the figure TeO$_2$ is separated only in the sample of the highest TeO$_2$ content, while a mixture of simultaneously existing crystalline phases is detected in the other samples (of TeO$_2$ content ranging between 40 mol % - 64 mol %). The other peculiarity is that crystalline ZnTeO$_3$ phase is predominantly separated only in samples containing more than 20 mol % of ZnO and below 9 mol % of Bi$_2$O$_3$. Obviously, the presence
of a higher Bi₂O₃ content (above 10 mol %) suppresses the ZnTeO₃ formation and bismuth containing phases crystallization upon additional heat treatment (Fig. 3).

SEM observations

SEM observations of selected samples 50TeO₂-50ZnO (TZ), 32TeO₂.60ZnO.4Bi₂O₃.4Nb₂O₅ (6H) and 48TeO₂.40ZnO.6Bi₂O₃.6Nb₂O₅ (6F-glass), heat treated for 6h at 500°C are performed (Fig. 4(a, b)). Partial crystallization is observed, but most of the sample volume is still amorphous. The preliminary microprobe chemical composition analysis shows the presence of ZnTeO₃ phase that is in agreement with XRD results (Fig. 3).

IR structural investigations

The IR spectra of the investigated samples are shown in Fig. 5 (a, b). Fig. 5(a) shows the IR spectra of multi-component glass compositions, while Fig. 5(b) presents the IR spectrum of a binary crystalline sample (TZ). The assignment of the bands is made in the framework of the local point symmetry approaches following the methods developed by Nakamoto and Tart [19, 20]. Two well resolved bands of maxima near 630 cm⁻¹ - 620 cm⁻¹ and 480 cm⁻¹ - 470 cm⁻¹, as well as shoulders near 870 cm⁻¹ and 780 cm⁻¹ - 770 cm⁻¹ are observed in the IR spectra of all glasses. According to the literature data [12-14] as well as our previous studies on tellurite glasses [21, 22], the intensive band at 635 cm⁻¹ (νₛ) with a shoulder at 675 cm⁻¹ (νₐₛ) are characteristic for TeO₄ (tbp) units. The weak band at 780 cm⁻¹ is ascribed to the symmetric stretching vibrations (νₛ) of TeO₄ units [21, 22]. In view of the obtained results it can be assumed that the structure of investigated glasses (short range order) is determined mainly by TeO₄ units (bands at 770 cm⁻¹, 630 cm⁻¹ - 620 cm⁻¹). They most probably participate in the formation of bridging Te–O–Te bonds. Nevertheless, the intensive band at ca 470 cm⁻¹, which obviously is a complex one, is due probably to the vibrations of dif-

![Fig. 3. XRD patterns of samples heat treated at 500°C for 6h.](image)
Svetlozar Ganev, Albena Bachvarova-Nedelcheva, Reni Iordanova, Bogdan Rangelov, Svetlin Parvanov

Different building units such as BiO₄ and ZnO₄ [23]. The symmetric vibrations of Te–O–Te bridges connecting different tellurite complexes are also in this spectral region. All spectra show a weak band at ca 870 cm⁻¹. The bands around 957 cm⁻¹ - 880 cm⁻¹ could be attributed to the stretching vibrations of NbO₆ building units according to Y. B. Saddeek et al. [24] who study the structural peculiarities of TeO₂/Nb₂O₅ glasses.

CONCLUSIONS

Glasses were prepared in the multicomponent TeO₂ – ZnO – Nb₂O₅ – Bi₂O₃ system with the application of the melt quenching method. They exhibited good thermal stability up to 400°C. It was proved that the short range order of the amorphous network was determined mainly by TeO₄ structural units. The heat treatment (6h at 500°C) led to obtaining polycrystalline samples whose content referred mainly to TeO₂, ZnTeO₃ and ZnO. The crystalline ZnTeO₃ phase was separated predominantly in compositions containing more than 50 mol % of TeO₂, more than 20 mol % of ZnO and less than 9 mol % of Bi₂O₃.

REFERENCES

2. V. Kozhukharov, H. Bürger, S. Neov, B. Sidzhimov, Atomic arrangement of a zinc-tellurate glass,