NUMERICAL INVESTIGATION OF THERMAL AND FLUID DYNAMIC BEHAVIOR OF SOLAR CHIMNEY BUILDING SYSTEMS

Oronzio Manca¹, Sergio Nardini¹, Paolo Romano¹, Emil Mihailov²

¹ Dipartimento di Ingegneria Industriale e dell’Informazione,
 Seconda Università degli Studi di Napoli,
 Via Roma 29, Aversa (CE), Italy,
 E-mail: oronzio.manca@unina2.it
² Department of Physical Metallurgy and Thermal Equipment
 University of Chemical Technology and Metallurgy
 8 Kl. Ohridski, 1756 Sofia, Bulgaria
 E-mail: emil@uctm.edu

ABSTRACT

In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-ε turbulence model. Two geometrical configurations are investigated: 1) a channel with principal walls one vertical and the other inclined and 2) a channel with vertical parallel walls. The chimney is 4.0 m high, 1.5 m wide whereas the thickness is 0.20 m for the vertical parallel walls configuration and at the inlet 0.34 m and at the outlet 0.20 m for the inclined ones. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for an uniform wall heat flux on the vertical wall equal to 300 and 600 W.m⁻². Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is examined and discussed.

Keywords: solar chimney, solar energy conversion, natural convection, numerical investigation.

INTRODUCTION

The increase in world population and the improvement of living standards have led to a growing demand for electricity. The limited availability of fossil fuels and environmental pollution caused by them, push the development of new technologies for the production of electricity from renewable energy sources. With a view to sustainable development, therefore, the energy future must have as protagonists renewable sources (solar, geothermal, wind, etc.), which are not exhausted and have no environmental impact because they do not produce greenhouse gases.

Buildings as big energy-consuming systems require large amount of energy to operate. Globally, buildings are responsible for approximately 40% of total world annual energy consumption. Sustainable design and construction are gaining significant momentum in the construction industry. Designers and owners are learning that with smart design, buildings can save energy and have a decreased impact on the environment. Sustainable buildings with renewable energy systems are trying to
operate independently without consumption of conventional resources. This reduces impact on the environment throughout buildings’ lifecycle. Renewable energy is a significant approach to reduce resource consumption in sustainable building [1] and integrated solar chimney systems could represent a possible solution [2].

A solar chimney is essentially divided into two parts, one – the solar air heater (collector) and second – the chimney. Two configurations of solar chimney are usually used: vertical solar chimney with vertical absorber geometry, and roof solar chimney [3]. For vertical solar chimney, vertical glass is used to gain solar heat. Temperature difference between vertical glass duct and interior room produces a pressure difference. An interior air will go out through inlet because of this pressure difference. The temperature difference is a determining factor of performance of solar chimney [4].

Designing a solar chimney includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance [5-7].

The solar chimney power plant uses solar radiation to raise the temperature of the air and the buoyancy of warm air to accelerate the air stream flowing through the system. This is an energy conversion system from solar to mechanical. A component, such as a turbine, set in the path of the air current, converts the kinetic energy of the flowing air into electricity.

Schlaich [8] in the late 1970s was the first to propose the solar chimney concept. Less than 4 years after he presented his ideas at a conference, construction on a pilot plant began in Manzanares, Spain, as a result of a joint venture between the German government and a Spanish utility. A 36 kW pilot plant was built, which produced electricity for 7 years, thus proving the efficiency and reliability of this novel technology. The chimney tower was 194.6 m high, and the collector had a radius of 122 m. Haaf [9] reported fundamental investigations, design criteria, and cost analysis for the Spanish system. Bernardes [10] presented a theoretical analysis of a solar chimney, operating on natural laminar convection in steady state. Von Backström and Fluri [11] investigated analytically the validity and applicability of the assumption that, for maximum fluid power. Von Backström and Gannon [12] were interested mainly in a one-dimensional compressible flow for the thermodynamic variable as dependence on chimney height, wall friction, additional losses, internal drag and area exchange. Pretorius and Kröger [13] evaluated the influence of a developed convective heat transfer equation, more accurate turbine inlet loss coefficient, quality collector roof glass and various types of soil on the performance of a large scale solar chimney power plant. Ming et al. [14] presented a mathematical model to evaluate the relative static pressure and driving force of the solar chimney power plant system and verified the model with numerical simulations. Maia et al. [15] presented a theoretical analysis of a turbulent flow inside a solar chimney. They showed that the most important physical elements in a solar chimney system are the tower dimensions as they cause the most significant variation in the flow behavior. Tahar and Mahfoud [16] presented a numerical simulation of natural convection in a solar chimney. They examined the effect of the system geometry on the natural convection phenomenon in the solar chimney.

In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-ε turbulence model. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for a uniform wall heat flux on the vertical wall is equal to 300 and 600 W.m⁻². Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is also examined.

Mathematical model

The present study considers steady, turbulent, three-dimensional natural convection flow in a solar chimney as shown in Fig. 1.

All the thermophysical fluid properties are assumed to be invariant except for the density in the buoyancy force term which can be adequately modeled by the Boussinesq approximation. The compression work,
viscous dissipation and radiative transport are assumed to be negligibly small. Thus, the governing equations can be written as:

Conservation of mass
\[\frac{\partial \rho}{\partial t} + \rho \nabla \cdot \mathbf{V} = 0 \] (1)

Conservation of x-momentum
\[\rho \frac{D u}{D t} = \rho \cdot f_x - \frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \] (2)

Conservation of y-momentum
\[\rho \frac{D v}{D t} = \rho \cdot f_y - \frac{\partial p}{\partial y} + \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} \] (3)

Conservation of z-momentum
\[\rho \frac{D w}{D t} = \rho \cdot f_z - \frac{\partial p}{\partial z} + \frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \] (4)

Conservation of Energy
\[\rho \cdot c_p \cdot \frac{DT}{Dt} = k \cdot \nabla^2 \cdot T + \mu_t \cdot \Phi + u^* \] (5)

where \(\mu_t \) is the turbulent dynamic viscosity which is calculated from the knowledge of the kinetic energy of turbulence, \(k \), and turbulent kinetic energy dissipation rate, \(\varepsilon \), as follows

\[\mu_t = \rho \cdot C_{\mu} \cdot f_{\mu} \left(\frac{k^2}{\varepsilon} \right) \] (6)

Turbulence kinetic energy (k-equation)
\[\frac{\partial}{\partial x} \left(\rho \overline{u_k} \right) + \frac{\partial}{\partial y} \left(\rho \overline{u_k} \right) + \frac{\partial}{\partial z} \left(\rho \overline{w_k} \right) = \frac{\partial}{\partial x} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x} + \frac{\partial}{\partial y} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial y} + \frac{\partial}{\partial z} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial z} + \frac{\partial^2}{\partial x^2} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x} + \frac{\partial^2}{\partial y^2} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial y} + \frac{\partial^2}{\partial z^2} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial z} + G_k + G_b - \rho \varepsilon - D \] (7)

Turbulence dissipation (\(\varepsilon \)-equation)
\[\frac{\partial}{\partial x} \left(\rho \overline{\varepsilon} \right) + \frac{\partial}{\partial y} \left(\rho \overline{\varepsilon} \right) + \frac{\partial}{\partial z} \left(\rho \overline{\varepsilon} \right) = \frac{\partial}{\partial x} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial \varepsilon}{\partial x} + \frac{\partial}{\partial y} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial \varepsilon}{\partial y} + \frac{\partial}{\partial z} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial \varepsilon}{\partial z} + C_{\varepsilon} f_{\varepsilon 1} \frac{G_k}{k} + C_{\varepsilon} f_{\varepsilon 2} \frac{\varepsilon^2}{k} + E \] (8)

In the \(k \) and \(\varepsilon \) Eqs. (7) and (8), the first two terms represent transport of kinetic energy of turbulence or dissipation rate of kinetic energy by convection. Third and fourth terms represent transport of these quantities by diffusion. \(G_k \) represents the rate of generation of turbulent kinetic energy due to mean velocity gradients, \(\rho\varepsilon \) is the destruction rate of the turbulent kinetic energy and \(G_b \) is the rate of generation of turbulent kinetic due to buoyancy. In addition, there are some extra terms denoted by D in k-equation and E in \(\varepsilon \)-equation to account for near wall behavior. \(f_1 \) and \(f_2 \) are the wall damping functions in \(\varepsilon \) equation [17].

The geometry under consideration in this analysis is constituted by a convergent vertical channel. The chan-

Table 1. Geometric parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>4.00 m</td>
</tr>
<tr>
<td>H</td>
<td>1.00 m</td>
</tr>
<tr>
<td>b<sub>max</sub></td>
<td>0.34 m</td>
</tr>
<tr>
<td>b<sub>min</sub></td>
<td>0.20 m</td>
</tr>
<tr>
<td>w</td>
<td>1.50 m</td>
</tr>
</tbody>
</table>

Fig. 1. Geometry.
nel is formed by a vertical surface of height \(L \) (Table 1), on which is imposed an uniform heat flux, and by an inclined surface of \(2^\circ \) from the vertical. The inlet and the outlet section of the channel are \(b_{\text{max}} \) and \(b_{\text{min}} \), respectively, while the depth is equal to \(w \). \(H \) is the distance from the ground of the input section.

The CAD model and the step of preprocessing were realized with software Gambit.

The boundary conditions imposed at the solid walls are mainly the no-slip and impermeability boundary conditions in addition to the specified wall heat flux. The conditions assumed at the inlet and outlet sections are those of ambient conditions (ambient pressure and temperature) for the numerical solution.

The governing equations given represent a set of coupled, non-linear, elliptic partial differential equations. In the present study, the numerical solutions of these were carried out using the commercial code FLUENT 6.3[18].

The operating temperature was set equal to 300 K; the acceleration of gravity was considered, and its value was set equal to 9.81 m.s\(^{-2}\). All the non-heated surfaces were considered adiabatic whereas in the first analysis an uniform heat flux of 300 W/m\(^2\) and 600 W.m\(^{-2}\) on the heated surface was considered.

The first simulations have the purpose to analyze the sensitivity of the grid on the numerical solution. In this paper a study on a different grid models has been carried out. Table 2 shows the grids analyzed.

Richardson’s equation, Eq. (9), allows us to estimate the exact value of a generic quantity comparing two configurations at a time.

\[
 f_{\text{exact}} = \frac{4}{3} f_{\text{exact}} - \frac{1}{3} f_i
\]

Table 2. Analyzed grids.

\[
\begin{array}{|c|c|}
\hline
\text{GRID} & \text{ELEMENTS} \\
\hline
1 & 54157 \\
2 & 334552 \\
3 & 433256 \\
4 & 860064 \\
5 & 3433932 \\
\hline
\end{array}
\]

Fig. 2. Percentage error Nusselt number.

Fig. 3. Temperature field of the vertical surface for \(q=300 \) W m\(^{-2}\).
after which it is possible to estimate the percentage error with the Eq. (10).

\[e\% = \frac{f_i - f_{i+1}}{f_{i+1}} \]

(10)

For each grid was evaluated the value of the average Nusselt number of vertical surface. Fig. 2 shows the percentage error of Nusselt number.

Therefore the grid 3 was used in this study, because it presented a percentage error of Nusselt number equal to 1.13% with computational saving compared to grid 4 and 5.

RESULTS AND DISCUSSION

Heat flux effect

Our objective was to analyze the effect of heat flux on heat transfer and flow of air into the chimney. For
this reason, we presented the fields and the profiles of air temperature and velocity.

Fig. 3 shows the field of temperature of vertical surface in case of heat flux equal to 300 W.m-2.

The wall temperature increases from the bottom upwards due to the progressive heating of the air in the channel. Furthermore, it can be seen also that the temperature assumes an uniform value, about 350K downstream the middle of channel height. Also the air temperature in the channel grows from the bottom to up, by presenting the highest values near the heated wall, Figs. 4 and 5.

Fig. 6 shows the distribution of the Nusselt number on the vertical heated wall. It is noticed that it decreases from the bottom upwards due to the reduction of the convective heat transfer. Fig. 7 reports the profile of

Table 3. Values of the significant quantities for q=300 W.m-2.

<table>
<thead>
<tr>
<th></th>
<th>H= 1.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat flux, W.m-2</td>
<td>300</td>
</tr>
<tr>
<td>Average Nusselt number</td>
<td>53.79</td>
</tr>
<tr>
<td>Mass flow rate, g.s-1</td>
<td>227</td>
</tr>
<tr>
<td>(V_{\text{max}}, \text{m.s}-1)</td>
<td>0.92</td>
</tr>
<tr>
<td>(T_{\text{max}}, \text{K})</td>
<td>357</td>
</tr>
</tbody>
</table>

Table 4. Values of the significant quantities for q=600 W.m-2.

<table>
<thead>
<tr>
<th></th>
<th>H= 1.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat flux, W.m-2</td>
<td>600</td>
</tr>
<tr>
<td>Average Nusselt number</td>
<td>60.93</td>
</tr>
<tr>
<td>Mass flow rate, g.s-1</td>
<td>289</td>
</tr>
<tr>
<td>(V_{\text{max}}, \text{m.s}-1)</td>
<td>1.18</td>
</tr>
<tr>
<td>(T_{\text{max}}, \text{K})</td>
<td>395</td>
</tr>
</tbody>
</table>

Table 5. Comparison between the significant quantities for q=300 and 600 W.m-2.

<table>
<thead>
<tr>
<th></th>
<th>H= 1.0 m</th>
<th>H= 1.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat flux, W.m-2</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>Average Nusselt number</td>
<td>53.79</td>
<td>60.93</td>
</tr>
<tr>
<td>Mass flow rate, g.s-1</td>
<td>227</td>
<td>289</td>
</tr>
<tr>
<td>(V_{\text{max}}, \text{m.s}-1)</td>
<td>0.92</td>
<td>1.18</td>
</tr>
<tr>
<td>(T_{\text{max}}, \text{K})</td>
<td>357</td>
<td>395</td>
</tr>
</tbody>
</table>

Table 6. Values of the significant quantities for parallel walls and q=300 W.m-2.

<table>
<thead>
<tr>
<th></th>
<th>H= 1.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat flux, W.m-2</td>
<td>300</td>
</tr>
<tr>
<td>Average Nusselt number</td>
<td>52.89</td>
</tr>
<tr>
<td>Mass flow rate, g.s-1</td>
<td>185</td>
</tr>
<tr>
<td>(V_{\text{max}}, \text{m.s}-1)</td>
<td>0.82</td>
</tr>
<tr>
<td>(T_{\text{max}}, \text{K})</td>
<td>358</td>
</tr>
</tbody>
</table>

Fig. 8. Velocity magnitude field, at the mid-channel section (Z=0.75 m) for q=300 W.m-2.
local Nusselt number on the centerline of the heated wall, and its value varies from 98 to 38. Average Nusselt number is equal to 53.79. The air velocity field, Fig. 8, shows an increase of it from the bottom upward to the progressive heating of the air in the solar chimney, and analyzing the velocity profile, Fig. 9, for three different values of Y, it is noted that the maximum is reached in the outlet section in proximity of the vertical wall. The maximum air velocity is equal to 0.92 m.s\(^{-1}\). Another important parameter evaluated in this study is the mass flow rate of air in the outlet section, in these conditions it is equal to 227 g.s\(^{-1}\).

Table 3 summarizes the values found.

Increasing the heat flux from 300 W.m\(^{-2}\) to 600 W.m\(^{-2}\), the temperature and velocity fields are very similar, but in this case the values found are more higher than...
Fig. 13. Nusselt number distribution on the vertical heated wall for parallel walls and $q=300$ W.m$^{-2}$.

Fig. 14. Local Nusselt number on the heated wall, at the mid-channel section ($Z=0.75$ m) for parallel walls $q=300$ W.m$^{-2}$.

Fig. 15. Velocity magnitude profile in the channel spacing, at the mid-channel section ($Z=0.75$ m) and several heights for parallel walls and $q=300$ W.m$^{-2}$.

Fig. 16. Comparison of centerline heated wall temperature.

Fig. 17. Comparison of centerline heated wall Nusselt number.

Fig. 18. Comparison of outlet magnitude velocity.
before. Local Nusselt number on the centerline of the heated wall decreases from 103 to 50. Average Nusselt number is equal to 60.93 and mass flow rate is equal to 289 g.s⁻¹.

Table 4 summarizes the values found. Table 5 shows a comparison of the results obtained.

From the comparison of the results it is noticed that doubling the heat flux assigned on the vertical surface, there is an increase of all parameters. In particular there is an increase of almost 30 % of the mass flow rate in the outlet section of the duct; an increase of almost 30 % of the maximum speed of the fluid, and by about 10 % of the maximum temperature of the wall.

Geometry effect

In this paragraph, the effect of varying the geometry of the solar chimney is evaluated, precisely a channel with vertical parallel walls is considered. The thickness is equal to 0.20 m while all other parameters are equal to the previous cases.

Fig. 10 shows the field of temperature of vertical surface in case of heat flux equal to 300 W/m². Also in this case we can note that the temperature increase from bottom to top for the progressive heating of the air, assuming a uniform value, about 350 K, at mid-wall. The air temperature in the channel grows from the bottom up, by presenting the highest values near the heated wall, Figs. 11-12.

The distribution of the Nusselt number on the vertical surface is reported in Fig. 13, it is noted that it decreases from the bottom upwards due to the reduction of the convective heat transfer. Fig. 14 reports the profile of local Nusselt number on the centerline of heating wall, and its value varies from 117 to 42. Average Nusselt number is equal to 52.89. The air velocity increases of it from the bottom upward to the progressive heating of the air in the solar chimney, and analyzing the velocity profile, Fig. 15, for three different value of Y, it is noted that the maximum is reached in the output section in proximity of the heated wall. The maximum speed air is equal to 0.88 m/s and the mass flow rate of air in the outlet section is equal to 185 g/s. Table 6 summarizes the values found.

Comparing the two different geometrical configurations we can say that from a thermal point of view the behavior is similar and what changes most is the fluid dynamic one. In fact we can see in Figs. 16-18 that wall temperature and local Nusselt number profiles are very similar. While in Fig. 19 we can note that air velocity in the outlet section of the converging channel is higher than that of the straight duct.

CONCLUSIONS

At an assigned distance from the ground and analyzing the phenomenon for different heat fluxes, it is observed an increase of the values of temperature, velocity and mass flow rate with increasing the heat flux of wall. Especially doubling the thermal flux from 300 W.m⁻² to 600 W.m⁻², there is an increase of almost 30 % of the mass flow in the outlet section of the duct; an increase of almost 30 % of the maximum velocity of the fluid, and approximately 10 % of the maximum temperature of the heated wall.

The numerical investigation carried out with the purpose of verifying the effect of the geometry of the chimney on the investigated parameters, showed as a straight chimney in place of a convergent does not lead to substantial differences from the thermal point of view and from the investigated fluid. In particular it passes from a maximum speed of 0.92 m.s⁻¹ for the converging channel to 0.88 m.s⁻¹ for the straight duct, therefore a reduction of approximately 5 %, while the mass flow is reduced by about 20 %, from 227 g.s⁻¹ to 185 g.s⁻¹.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>channel high, m</td>
</tr>
<tr>
<td>H</td>
<td>ground distance, m</td>
</tr>
<tr>
<td>W</td>
<td>channel width, m</td>
</tr>
<tr>
<td>bₘᵢₙ</td>
<td>thickness outlet, m</td>
</tr>
<tr>
<td>bₘₓ</td>
<td>thickness inlet, m</td>
</tr>
<tr>
<td>Cₚ</td>
<td>Specific heat at constant pressure, J.Kg⁻¹.K⁻¹</td>
</tr>
<tr>
<td>Cₑ, Cₑ, Cₚ</td>
<td>Empirical constants in the k-ε turbulence model</td>
</tr>
<tr>
<td>D</td>
<td>Extra term in Eq. 7</td>
</tr>
<tr>
<td>E</td>
<td>Roughness parameter</td>
</tr>
<tr>
<td>fₑ, fₑ, fₑ</td>
<td>Wall damping function</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational constant, m.s⁻²</td>
</tr>
<tr>
<td>Gₑ</td>
<td>Production of turbulent kinetic energy due to buoyancy</td>
</tr>
<tr>
<td>Gₑ</td>
<td>Production of turbulent kinetic energy due to buoyancy</td>
</tr>
</tbody>
</table>
mean velocity gradient
\(\text{Gr} \) Grashof number
\(h \) Average heat transfer coefficient, W.m\(^2\).K\(^{-1}\)
\(h_y \) Local heat transfer coefficient, W.m\(^2\).K\(^{-1}\)
\(k \) Kinetic energy of turbulence
\(\text{Nu}_y \) Local Nusselt number
\(\text{Nu} \) Average Nusselt number
\(p \) Pressure, Pa
\(q \) Heat flux, W.m\(^{-2}\)
\(\text{Pr} \) Prandtl number
\(\text{Pr}_t \) Turbulent Prandtl number
\(\text{Ra} \) Rayleigh number = (GrPr)
\(T \) Temperature, K
\(T_o \) Ambient temperature, K
\(T_s \) Channel wall (surface) temperature, K
\(u, v, w, x-, y- \) and z-components of velocities, respectively, m.s\(^{-1}\)
\(\bar{u}, \bar{v}, \bar{w} \) Time-averaged x, y and z components of velocities, respectively
\(X, Y, Z \) Cartesian coordinates

Greek symbols
\(\alpha \) Thermal diffusivity, m\(^2\).s\(^{-1}\)
\(\beta \) Coefficient of thermal expansion, K\(^{-1}\)
\(\kappa \) Thermal conductivity, W.m\(^{-1}\).K\(^{-1}\)
\(\varepsilon \) Rate of dissipation of the kinetic energy
\(\mu \) Laminar viscosity, Pa.s
\(\mu_t \) Turbulent viscosity, Pa.s
\(\nu \) Molecular kinematic viscosity, m\(^2\).s\(^{-1}\)
\(\rho \) Density, kg.m\(^{-3}\)
\(\sigma_k \) Prandtl number for \(k \)
\(\sigma_\varepsilon \) Prandtl number for \(\varepsilon \)

REFERENCES

